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Abstract-This paper presents a three-equation turbulence model for the determination of turbulent 
quantities, such as the mean square temperature variance, turbulence kinetic energy and its dissipation 
rate. The conservation equations are discretized by the finite volume method SOLA [Hirt et al., Los 
Alamos Laboratory, Report LA-5852 (1975)]. The model is tested for a grid-generated flow and for a 
fairly hot axisymmetrical turbulent air jet. The results of the present calculations are compared with the 
experimental data of other authors. The comparison shows that the good agreement, for the thermal field, 
depends fundamentally on the value of the turbulent Prandtl number and the ratio of time scales of 

turbulent temperature and velocity field. 

1. INTRODUCTION 

THE PREDICTION of the turbulent thermal field is 
important for several engineering applications and 
for nuclear fast reactors in particular. The zones of 
mixture between the turbulent flows of different tem- 
peratures are places of important temperature gradi- 
ents and fluctuations. It occurs in the outlet of the 
core of the nuclear fast reactors and in the mixture of 
two flows with different temperatures in the outlet of 
tubes. The temperature fluctuations can attack the 
structures by the phenomena of thermal striping. 

Several authors have worked in the modeling of 
turbulent flow with heat transfer using second order 
closures. In 1978, Launder [l] give a bibliographical 
review and proposed closures for the unknown terms. 
Lemos and Sesonske [2] show the results obtained 
with an algebraic model applied to a flow of liquid 
metal inside a tube. Chung and Sung [3] present a 
mixed model with two algebraic equations (for the 
Reynolds stress and for the turbulent heat flux) and 
two differential equations (for the temperature fluc- 
tuation and its dissipation rate), applied to a turbulent 
boundary layer over a heated plate. 

In order to predict temperature fluctuations in 
turbulent flows, a model of turbulence has been 
developed with three transport equations for the vari- 
ance of the temperature (02), the kinetic energy of 
turbulence (k) and the dissipation rate of kinetic 
energy (E). The fluid is considered incompressible and 
Newtonian. The following properties, viscosity, ther- 
mal conductivity and specific heat, are considered con- 
stant. As for density, its dependence on temperature 
has been considered using the Boussinesq approxi- 
mation. 

To deal with the turbulent flow, the three variables, 
velocity, pressure and temperature, are divided into 

medium and fluctuating parts in the continuity, 
Navier-Stokes and energy equations. The Reynolds 
tensor is determined using the turbulent viscosity with 
the k--E model. The turbulent heat fluxes are deter- 
mined using a turbulent diffusivity with a constant 
value for the turbulent Prandtl number. The equation 
for the temperature fluctuations is closed using the 
first gradient law for the term of turbulent diffusion. 
The ratio (R) of time scales of turbulent temperature 
and velocity fields is employed to obtain the dis- 
sipation rate of temperature fluctuations. 

The finite volume method is used to solve numeri- 
cally this system of differential equations. We use the 
principle of staggered mesh ; all the scalars are treated 
in the center of the control volumes and the velocities 
are localized in the center of the faces of the control 
volumes. The equations are discretized in time with 
the semi-implicit scheme. This method is derived from 
SOLA [4]. The code used was the TRIO-VF/CEA, 
and the computer was a CRAY-I. 

First, this model will be tested for the turbulent 
flow below a heated grid, and the numerical results 
obtained will be compared with the experimental 
results of two experiments. For the first one, we have 
used the experimental results for homogeneous hot 
turbulence below a grid of Warhaft and Lumley [5], 
which allows us to test the model in a configuration 
of constant mean temperature. The second set of 
experimental results for the grid turbulent flow with 
cross-stream temperature gradient of Sirivat and 
Warhaft [6], allows us to test the model where the 
production terms of temperature fluctuations are 
important. 

Then, the model will be tested for the fairly hot 
round turbulent air jet, and the numerical results 
obtained will be compared with the experimental 
results. The measured values are obtained from 
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NOMENCLATURE 

B mesh size of the grid placed in the wind T, maximum temperature in the cross-section 
tunnel of the jet 

C model constants T, ambient temperature 

9 gravity acceleration u, averaged velocity components 
G generation rate of turbulent energy due to U, components of fluctuating velocity 

buoyancy effects W vertical velocity 
k turbulent kinetic energy Z vertical coordinate. 

P pressure 
P generation rate of turbulent energy Greek symbols 
R ratio of time scales of turbulent El thermal eddy diffusivity 

temperature and velocity field B coefficient of thermal expansion 
Pr, turbulent Prandtl number E dissipation rate of kinetic energy of 
Pr, constant Prandtl number for the k turbulence 

equation $ variance of temperature fluctuations 

& Richardson flux number “1 eddy viscosity 
T temperature P density. 

Bahraoui and Fulachier [7]. For this experiment, the 
comparisons between calculations and measured 
values are made in two cross-sections of the jet for : 
mean velocity, mean temperature, Reynolds stress and 
variance of temperature fluctuations, 

2. TRANSPORT EQUATIONS FOR THE MEAN 

FLOW 

The fluid is considered incompressible and New- 
tonian. For the physical properties, we take the vis- 
cosity, thermal conductivity and the specific heat as 
constants. For the density, the Boussinesq approach 
is used : 

P(T) = ~“11 --NT- ToI1 (1) 
where p” is the density at the reference temperature 
(TO) and p the volumetric expansion coefficient. The 
variations of density are only taken into account in the 
source term due to buoyancy effects in the momentum 
conservation equation. 

To treat the turbulent flow the Reynolds decompo- 
sition is employed. It decomposes the instantaneous 
variables, velocities (U,), temperature (T) and press- 
ure (JJ) as the addition of the mean field and the 
fluctuating field : 

I/,= qtll: 

p = Is+p, 

T= T+S. (2) 

U,, r’ and F represent the mean quantities of the 
instantaneous components; u;, p’, and f3 their fluc- 
tuating components. Applying this decomposition to 
the variables in the local instantaneous equations, 
the governing equations for the mean velocity and 
temperature in turbulent flows can be written as 
follows. 

2.1. Mass conservation equation 

2.2. Momentum conservation equation 

(3) 

-m;)+g(l -/l(T-To) 
--> 

(4) 

2.3. Energy conservation equation 

In this system of equations we have two additional 
unknowns, the Reynolds stress tensor (uzu,) and the 
turbulent heat flux (u,O). The Reynolds stress tensor 
will be obtained with the turbulent model k-6. The 
model using a turbulent Prandtl number will be 
employed to obtain the turbulent heat flux. 

3. TURBULENCE MODEL FOR THE VELOCITY 

FIELD 

To obtain the Reynolds stress tensor the hypothesis 
of an eddy viscosity (v,) is employed. In this modeling, 
the proportionality between the Reynolds stress and 
the deformation tensor is used : 

-Gji;=v,(f$f$;k6,, (6) 

where 6,, is the delta Cramer operator : 6,, = 1 if i = j, 
and 6,, = 0 if i # j. The eddy viscosity is obtained from 
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the k-E model, where k is the turbulent kinetic energy 
and E its dissipation rate : 

2 

v, = C, F-; 
& 

where C,, = 0.09. 

3.1. Turbulent kinetic energy (k) 

The equation for k is written in its differential 
modeled form [S] : 

_=_ (7) 

P = ii$ G = /Jg,u,O, Pr, = 1.0. 
/ / 

P represents the generation rate of turbulent kinetic 
energy due to the mean velocity gradients and G the 

generation rate of turbulent energy due to buoyancy 
effects. 

3.2. Dissipation rate of turbulent kinetic energy (E) 

The equation for the dissipation rate of turbulent 
kinetic energy is used in the following form [8] : 

Source(&) = C,,(l +C,,IR,)(P+G)i -CL*:. 

The constant values used are taken from [8] : 

Pr, = 1.3, Cc, = 1.44, C,? = 1.92, C,, = 0.8. 

Rf is the Richardson flux number used by Rodi [9] : 

G 
Rr= -.~ 

P+G’ 

4. TURBULENCE MODEL FOR THE THERMAL 

FIELD 

To obtain the turbulent heat flux, the hypothesis of 
a thermal eddy diffusivity is employed. This diffusivity 
is determined from a constant turbulent Prandtl 
number Pr,: 

(9) 

where 

“L 
% = Pr, 

The value 0.9 is frequently used for the turbulent 
Prandtl number. In this work we will show the results 
obtained with two other different turbulent Prandtl 
numbers, 0.35 (for the grid generated flow) and 0.4 
(for the turbulent air jet). 

4.1. Equation for the variance of temperature fluc- 

tuations 

The equation for the variance of temperature fluc- 
tuations is obtained from the energy equation, with 
the Reynolds decomposition, taking the difference 
between the instantaneous and mean forms for the 
temperature : 

g = ;(dg -q+PI-By (10) 

where P, is the generation rate of 0’ by mean tem- 

perature gradients : 

P” = -2QE 
I 

and E# is the dissipation rate of variance of tem- 
perature fluctuations : 

a0 a0 
&@ = 2u- - 

ax, ax, 

As we are validating the model for turbulent flows, 
we are working with large Reynolds numbers 
(_ 10 000), thus the term due to molecular diffusion 
may be neglected [IO]. The term of diffusion due to 
the turbulent convection is modeled with the first law 
gradient : 

The value used for C, is 0.13 [ 1 I]. 
With the above hypothesis, the equation to be 

solved for the variance of temperature fluctuations is : 

---=-- (11) 

The term of dissipation rate of temperature fluc- 
tuations is modeled from the ratio of time scales of 
turbulent temperature and velocity field : 

,J!x! 
1 (12) 

Several studies have been realized in order to obtain 
the ratio R from the grid generated flows. In ref. [5] 
a bibliographical review of the values found by several 
authors, in heated grid generated flows, is given. It 
shows that the values of the ratio R can vary from 0.4 
to 1.6 for the cases studied. 

In this work we show a sensibility analysis of the 
value of the ratio R, within the usual values employed, 
over the level of the variance of temperature fluc- 
tuations for the turbulent air jet. 

5. COMPUTATIONAL DETAILS 

The finite volume method using the principle of a 
staggered mesh was applied to solve the set of equa- 
tions presented above. In this method, the con- 
servation equations are integrated in a control 



volume, and then the Gauss theorem is used to trans- 
form some integrals of volume into integrals of 
surface. All the scalar quantities are treated in the 
center of the control volumes and the velocities are 
localized in the center of the face of control volumes. 

The equation of momentum conse~ation is dis- 
cretized in time under semi-implicit form for the press- 
ure gradient term. This method is derived from the 
SOLA method developed by Hirt et al. [4]. Below we 
show this discretization : 

l conservation of mass : 

(13) 

0 conservation of momentum : 

or in another form : 

The method of solution consists in substituting the 
equation for the velocity at the time n+ 1 (equation 
(14)) in the equation of mass conservation at the 
time nt 1 (equation (13)). With this method we can 
calculate the pressure field at the time n+ 1 and then 
the values of the velocities at the time n+ 1. The 
solution of the hydrodynamic problem is a field of 
pressure and velocity respecting the equations of mass 
and momentum conservation. To solve the linear sys- 
tem for the pressure the CHOLESKY method was 
used. It was possible to use this method because the 
matrix of this system is symmetrical, positive and 
entirely stocked in the computer memory. 

For the equations of energy, k, E and the tem- 
perature fluctuations, we use the explicit scheme. The 
code used was TRIOiVF of the Centre d’Etudes 
Nucleaires de Grenoble, and the computer was a 
CRAY-I. The grid used had (31 x 32) points. 

6. RESULTS AND DISCUSSION 

The turbulent model shown in this paper has been 
applied to three kinds of configurations : 

(a) isothermal grid-generated flow ; 
(b) grid-generated flow with cross-stream tem- 

perature gradient ; 
(c) fairly hot axisymmetrical turbulent air jet. 

The comparison of the results, between the values 
obtained by the model and the measurements, is made 
for the stationary regime although the code can be 
used in a transitory regime. The first experiment (a) 
uses a grid with the mesh B = 2.54 cm, placed in a 

vertical wind tunnel. The test section has a length of 
167 mesh and its cross-section is 16B x 168. The mean 
speed of the air is 6.5 m s- ‘. The Reynolds number 
based on the mesh is 10 000. The porosity of the grid 
is 0.66, made of square bars of 0.476 x 0.476 cm. The 
measured values for this experjment are given by War- 
haft and Lumley [5]. Among the measures made by 
these authors we selected two cases : the first case with 
a mean temperature of 300 K and the second case 
with a mean temperature of 308 K. 

We have used four types of boundary conditions 
to describe the experiment of grid-generated flows 
(experiments (a) and (b)). In the inlet of the com- 
putational domain (Z/B = 80), we have imposed the 
measured profiles of uniform velocity, temperature 
and turbulent quantities. For experiment (a), the 
values used for these boundary conditions were 
obtained from ref. [5]. For the hydrodynamic field, 
the values used are: vertical velocity B’ = 6.5 m s ‘, 
turbulent kinetic energy k = 2. I9 x 10 ’ m2 s _ ’ and 
the dissipation rate of kinetic energy of turbulence 
E = 9.51 x 10.-“m’s_‘. For the thermal field the inlet 
boundary conditions are the following: In the first 
case, temperature T = 300 K and 8’ = 4172 x lo- i K’ 
and in the second case, temperature T = 308 K and 
$= 1.22~10.‘K’. 

In the center of the tunnel we have used a sym- 
metrical condition, on the opposite side, an adiabatic 
wall. The logarithmic wall function was used [S]. In 
the outlet, we impose a nil pressure. Figure 1 shows 
these positions. 

For the experiment (a), the production terms P (due 
to the mean velocity gradient) and G (due to the 
buoyancy) are nil. Thus. the terms due to convection 
and diffusion have an important role in the balance 
of k and R equations. As there is no temperature 
gradient, it is possible to validate this model for the 
case when only the transport (convection, diffusion) 
and dissipation terms are taken into account in the 
temperature fluctuation equation (10). The values 
used for the ratio R in the numerical model are the 
values found experimentally in ref. [S]. 

Figure 2 shows the results of the comparison 

7 
L 

Z/B=167 h 

Z/B = 80 

FIG. I. Boundary conditions for the grid-generated flow. (1) 
Velocity and scalar quantities imposed. (2) Null pressure 

imposed. (3) Symmetry. (4) Adiabatic wall. 
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‘7 + measured values 

h 

- T=308K R=0.95 

T=300 K R=i SO 

o -~---i----_i___- . ,____~ 

SO 120 IS0 

axial distance (Z/B) 

FIG. 2. Comparison between measured values presented in 
ref. [SJ and calculation of the temperature fluctuations 

behind an isothermal grid. 

between the calculations and measurements for the 
decay of temperature fluctuation, in the center of the 
wind tunnel for the first experiment (a). In this figure 
we notice the good agreement between calculations 
and measurements. We should remark that the 
only inconvenience of this model is the utilization 
of different values of R (obtained experimentally) 
depending on the temperature, R = 0.95 for T = 308 
K and R = 1.5 for T = 300 K. Although these tem- 
peratures are very similar, the values of the ratio (R) 
between the time scales of turbulent temperature and 
velocity field are very different. This occurs because 
of the large variation of the decay rate of temperature 
fluctuations. In grid turbulence, R = n/m, where rz 
and m are the respective exponents of the power- 
law decays for velocity and temperature variance. In 
numerous experiments made by Comte-Bellot and 
Corrsin 1121, in the grid-generated turbulence, it is 
shown that the decay exponent (n) in the decay law 
for the velocity fluctuations has a variation of about 
12%. Nevertheless, measures made by Warhaft and 
Lumley [5] for the heated grid generated turbulence, 
show that the decay exponent (m) for the temperature 
fluctuations varies by a factor of more than 3. They [5] 
show that the decay rate of temperature fluctuations 
produced by heating the grid depends on the initial 
temperature fluctuations. Another phenomenon ob- 
served is that the wave number of the maximum 
temperature spectrum changes when varying the heat 
applied at the grid, indicating that the geometry of the 
thermal fluctuations was changed. 

For the second experiment (b), we used the values 
obtained experimentally in ref. [6]. The only difference 
with the first experiment (a) was the imposition of a 
temperature gradient in the grid. This gradient was 
obtained by differently heating the bars of the grid. 
To make comparisons between the calculations and 
the measurements we chose a test with a mean speed 
of air of 3.4 m s- ’ (Reynolds number = 5200) and a 
temperature gradient of 8. I K m ‘. For these exper- 
iments of grid-generated turbulence a order-of- 
magnitude analysis indicates that the buoyancy effects 
may be neglected. The values used for the inlet tur- 

o t_ ._ .[. .-. .--r _I. 

40 

a~% distance (z:o6) 
160 

FIG. 3. Comparison between measured values (61 and 
~~lcuiations for a god-generated flow with cross-stream 

temperature gradient. 

bulent boundary conditions arc : turbulent kinetic 
energy k = 8.8 x lo-’ m’s_ ‘, dissipation rate of kin- 
etic energy F_= 3.7x IO-’ mz se3 and temperature 
~uctuations @ = 9.19 x IO-’ K’. 

In Figs. 3 and 4 we show the results of the com- 
parison between calcuiations and measurements, in 
the center of the wind tunnel, obtained for the second 
experiment (b). In this configuration all the terms 
of the temperature fluctuation equation (convection, 
diffusion, production due to the mean temperature 
gradient) play an important role. Figure 3 shows the 
results obtained using the ratio R = 0.8 and two 

values for the turbulent Prandtl number of 0.35 and 
0.9. We verify that the value of 0.9 usually employed 
in several thermal turbulence models gives under- 
estimated values of temperature fluctuations. The best 
agreement between calculations and measurements 
was obtained with Pr, = 0.35. Using the value 0.9 for 
the turbulence Prandtl number we obtain smaller 
values of turbulent heat flux (t+Q) than using 0.35 and 
consequently a smaller generation rate of temperature 
fluctuations. The velocity fluctuation w is the com- 
ponent in the direction of the temperatLlre gradient. 
The turbulent heat flux was correctly predicted when 
the value 0.35 was employed for the turbulent Prandtl 
number. 

The values obtained for the dissipation rate of tem- 

4-l 
JR=O.Lli 

i measured values 

0 L Pr’=0’35 -/-7-7 

40 
a:! distance f%!%) 

160 

FKZ. 4. Comparison between measured values [6] and cal- 
culations for the dissipation rate of temperature fluctuations. 
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Z/D = 8 0 

+. 

.e t 

f measured values 

~ model 

L 0 04 
radial distance (m) 

FIG. 5. Boundary conditions for the round jet. (I) Veloctty 
and scalar quantities imposed. (2) Null pressure imposed. FIG. 6. Comparison between experimental data [7] and 

(3) Symmetry. calculations for the vertical velocity (Z/D = 8.0). 

perature fluctuations are compared with the measured 
values and are presented in Fig. 4. 

The turbulence model shown in this paper has also 
been applied to a fairly hot axisymmetrical turbulent 
air jet (Fig. 5). The experimental apparatus consists 
of an air jet that comes out of an annular tube with a 
mass rate of 15 m 3 h ‘. The inside diameter is d = 18.2 
mm and the outside diameter is D = 25.3 mm. This 

flow is heated with electrical resistances placed down- 
stream. The maximum difference of temperature, 
between the jet and the ambient temperature, is 22 K. 
For this experiment the role of buoyancy effects is 
small, but was considered in all calculations. The mea- 
sured values are given in ref. [7]. In this experiment 
all the terms of the model play a part, because we 
have gradients of velocity, temperature and turbulent 
quantities. The computational domain and the types 
of boundary conditions are presented in Fig. 5. The 
values employed for the boundary conditions in the 
inlet of the domain are shown below in Table I. 

The values of mean velocity, k, E, mean temperature 
and temperature fluctuations, given here for these 

boundary conditions, are measured values obtained 
from ref. [7]. 

The comparisons for the radial profiles of vertical 
velocities are presented in Figs. 6 and 7, respectively, 
for two sections Z/D = 8.0 and Z/D = I1 .O. In these 
figures we note the good agreement obtained with 
the k--E model to predict the profile of mean vertical 

‘2 1 

i Z/D = 11 .O 

0.00 004 

radial distance (m) 
0.08 

FIG. 7. Comparison between experimental data [7] and 
calculations for the vertical velocity (Z/D = 1 I .O). 

Table I. 

r (mm) W(m ss’) T (K) X (m’s_‘) E (m’s_‘) 0’ (K’) 

1.1 14.3 307.2 8.6 2680.5 6.9 
3.4 13.6 306.5 8.9 2090.0 7.1 
5.6 12.5 305.5 9.7 2090.0 6.6 
7.9 II.1 304.0 10.1 2101.0 5.6 

10.2 9.5 302.5 10.3 230 I .O 5.2 
12.4 8.0 301.4 10.0 2270.0 5.0 
14.7 6.2 300.0 9.1 2050.0 4.5 
17.0 4.8 298.6 7.8 1670.0 4.2 
19.2 3.5 297.3 6.7 1317.0 3.5 
21.5 2.7 296. I 5.6 1037.0 2.7 
23.7 2.2 295.0 4.6 762.0 2.0 
26.0 1.7 294.8 3.6 563.0 1.X 
2X.3 1.4 293.7 2.7 368.0 1.7 
30.5 0.9 293.3 2.2 270.0 1.5 
33.2 0.4 293.0 1.0 140.0 1.3 
36.4 0.2 293.0 0.5 50.0 0.X 
41.1 0.2 293.0 0.3 26.0 0.5 

47.38- 185.0 0.2 293.0 0.1 3.0 0.2 
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3o 1 
30.5 ~, 

i Z/D= 11.0 

+ measured values 

~ mode’ 

0.04 

radial distance (m) 

FIG. 8. Comparison between experimental data [7] and FIG. 11. Comparison between experimental data [7] and 
calculations for the Reynolds-shear stress (Z/D = 8.0). calculations for the mean temperature (Z/D = 11 .O). 

+ measured values 

000 0.04 

radial distance (m) 
0.08 

FIG. 9. Comparison between experimental data [7] and 
calculations for the Reynolds-shear stress (Z/D = 11 .O). 

velocity. The model predicts quite well the profile 
in the central region of the jet, but overpredicts 
it in the edge region (maximum deviation of about 
25%). 

Figures 8 and 9 show the comparison between the 
measured values and calculations for the component 
uw of the Reynolds stress. In these figures, we note 
that the model predicts the measured profiles, with a 
good agreement between the center of the jet and 
r = 0.02 mm and an underprediction beyond this 
distance. The maximum deviation is about 30%. 

For the prediction of the mean temperature, we 
compare the use of two values for the turbulent 

305 

, Z/D = 8.0 

I 
g 
E 300 

_::,,,; 
2 
m, 

‘I,, 

E 

E 

295 I_\_\\ -tm measured values 

‘,\ - Prt = 0.4 

P’t = 0.9 
‘~,_ 

j _,I 
~. 

0.04 

radial distance (m) 

FIG. 10. Comparison between experimental data [7] and 
calculations for the mean temperature (Z/D = 8.0). 

Prandtl number, 0.9 and 0.4. In Figs. 10 and 1 I we 
show the comparison between the model (with these 
two values of turbulent Prandtl number) and the mea- 
sured values. The values of the mean temperature 
obtained with a turbulent Prandtl number of 0.9 
(employed in several codes) are overestimated all over 
the region of the jet. When the value 0.4 is given to 
the turbulent Prandtl number, the level of temperature 
is correctly predicted between the central region of the 
jet and r = 0.03 mm, but is overpredicted in the edge 

of the jet. 
Figures 12 and 13 show the results for the variance 

of temperature fluctuations in the two cross-sections, 

I Z/D = 8.0 

0.0 

+ measured values 

--- R=0.3 
R=0.5 
R=0.8 

0.00 0.04 

radial distance (m) 
0.08 

FIG. 12. Comparison between experimental data [7] and 
calculations for the temperature fluctuations (Z/O = 8.0). 

I Z/D = 11.0 

-t measured values 

R=0.3 
R=0.5 

R=0.8 

k 
-\\.ii__ 

+ 1. 
’ 

0.0 1 r t 
I I 

0.00 0.04 

radial distance (m) 
0.08 

FIG. 13. Comparison between experimental data [7] and 
calculations for the temperature fluctuations (Z/D = 8.0). 
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Z/D = 8.0 and Z/D = I1 .O, respectively. In these fig- 
ures, we show the sensitivity of the ratio R, used to 
obtain the dissipation of the temperature fluctuations. 
We give three values for R: 0.3, 0.5 and 0.8. This 
range of values is found frequently in the literature. 
We note that the value 0.3 for R gives the best agree- 

ment between calculations and measured values (for 
Z/D = 8.0 this value underpredicts the fluctuations 
and for Z/D = 11 .O this value overpredicts the tem- 
perature fluctuations). We observe that the more the 
values given to R increase, the more the temperature 
fluctuations are overpredicted, because R is inversely 
proportional to the dissipation rate of temperature 
fluctuations. The maximum deviation is about 20% 
when R = 0.3 is employed. 

7. CONCLUSION 

The three-equation model employed here has per- 
mitted us to calculate the turbulent thermal field for 

the grid-generated flows and turbulent round jets. We 
have shown the comparison between measurements 
and calculations for the variance of temperature fluc- 
tuations and its rate of dissipation, in flows behind a 
generated isothermal grid and with a cross-stream 
gradient temperature, in flows behind a generated 
isothermal grid and with a cross-stream gradient 
temperature. We have also shown the comparison 
between measured values and calculations for the 
mean velocity, mean temperature. Reynolds stress and 
variance of temperature fluctuations in a fairly hot 
axisymmetrical turbulent air jet. The results obtained 
with this model show a good agreement with the mea- 
surcd values. We notice that this agreement depends 

fundamentally on the values used for the constant 
models, ratio R (for the temperature fluctuations) and 
the turbulent Prandtl number (for the mean tem- 
perature). In the case of grid generated flows that 
have been largely explored experimentally, measured 
values are available for these constants and there are 
good values to give to the necessary boundary con- 
ditions. This fact has enabled the validation of the 
model in the application of turbulence grid generated 
flows (isothermal and with a cross-stream gradient 

temperature). 
The best agreement between calculation and 

measurements was obtained using the following 
values for R and Pr, for the studied cases : 

l isothermal grid-generated flow (T = 300 K)- 
R = 1.5, 

l isothermal grid-generated flow (T= 308 K)- 
R = 0.95, 

l grid-generated flow with cross-stream tem- 
perature-R = 0.8 and Pr, = 0.35, 

l weakly heated jet-R = 0.3 and Pr, = 0.4. 

The large variation of the ratio R is related to the 
variation of the decay exponent for the temperature 

fluctuations. Warhalf and Lumley [5], in the grid gen- 
erated turbulence, show that this variation occurs 
because this rate depends on the level of initial tem- 
perature fluctuations and the geometry of thermal 
fluctuations. Measurements show that the wave num- 
ber of the maximum temperature spectrum changes 
with the heating applied to the grid. 

We still have to work in the construction of refined 

turbulence models, mainly for the determination of 
the turbulent heat flux and for the dissipation rate of 
temperature fluctuations. The modelling of the equa- 
tions for (u,(j) and (et,) and measurements of the 
different terms (diffusion. production and dissipation) 
of these equations have to be done for several flows. 
The knowledge of measured values for the boundary 
conditions and for the sections of the flows, will make 
it easier to determine the values employed for the 
constants of these models. 
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